One of the main obstacles toward building efficient quantum computing systems is decoherence, where the inevitable interaction between the qubits and the surrounding environment leads to a vanishing entanglement. We consider a system of two interacting asymmetric two-level atoms (qubits) in the presence of pure and correlated dephasing environments. We study the dynamics of entanglement while varying the interaction strength between the two qubits, their relative frequencies, and their coupling strength to the environment starting from different initial states of practical interest. The impact of the asymmetry of the two qubits, reflected in their different frequencies and coupling strengths to the environment, varies significantly depending on the initial state of the system and its degree of anisotropy. For an initial disentangled, or a Werner, state, as the difference between the frequencies increases, the entanglement decay rate increases, with more persistence at the higher degrees of anisotropy in the former state. However, for an initial anti-correlated Bell state, the entanglement decays more rapidly in the symmetric case compared with the asymmetric one. The difference in the coupling strengths of the two qubits to the pure (uncorrelated) dephasing environment leads to higher entanglement decay in the different initial state cases, though the rate varies depending on the degree of anisotropy and the initial state. Interestingly, the correlated dephasing environment, within a certain range, was found to enhance the entanglement dynamics starting from certain initial states, such as the disentangled, anti-correlated Bell, and Werner, whereas it exhibits a decaying effect in other cases such as the initial correlated Bell state.
Read full abstract