The main waste generated by juice industry comprises orange peels, which have a great upcycling potential once stabilized. Drying is the most used method for this purpose, but the high energy consumption prompts interest in its intensification. This study assessed the influence of freeze-thaw and pulsed electric field (PEF) pretreatments in conventional and airborne ultrasound-assisted drying (50 °C) of orange peels. None of these pretreatments alone got to reduce processing times significantly, but combined with ultrasound-assisted drying produced a significant shortening of the process. This was particularly important in the lower intensity PEF pretreatment tested (0.33 kJ/kg), indicating the existence of optimum conditions to carry out the pretreatments. Microstructure analysis revealed that the application of ultrasound during drying led to better preservation of the sample structure. Thus, the integration of pretreatment techniques to ultrasound-assisted drying may not only shorten the process but also help to preserve the original structure.