Relevance: One of the main causes of stroke in acute cerebrovascular accident (ACVA) is ischemia, which begins with the formation of an acute neuronal energy deficit with subsequent activation of the "ischemic cascade" reactions that lead to irreversible damage to nervous tissue. Aim: To compare the effect of mesenchymal stromal cells (MSCs) of different origin and human MSCs from Wharton's jelly lysate on neuroapoptotic changes in the somatosensory cortex of the rat brain in conditions of model ischemia-reperfusion (IR) performed by ductal cytoflowmetry. Materials and methods: The experiment was carried out using 165 four-month-old male Wistar rats weighing 160-190 g, which were subjected to bilateral 20-minute transient ischemia-reperfusion (IR) of the internal carotid arteries. After modeling the pathology, the animals were injected into the femoral vein (iv) with MSCs obtained from umbilical cord Wharton jelly, human and rat adipose tissue in the amount of 106 cells/animal. Other groups of experimental animals were intravenously injected with fetal rat fibroblasts in the amount of 106 cells/animal (in 0.2 ml of physiological solution) and MSCs from umbilical cord Wharton's jelly lysate in a dose of 0.2 ml/animal. Control animals were injected intravenously with 0.2 ml of physiological solution. The level of DNA fragmentation in the nuclei of neurons of the somatosensory cortex of rats on the 7th day after ischemia-reperfusion was studied by flow cytometry. The research was carried out on a flow cytometer "Partech РАС" of the company Partech, Germany. The statistical significance of the differences was assessed by Student's t-test. Results: The study noted an increase in the level of fragmented DNA in a group of animals with IR by 3.25 times 7 days after model IR. The performed treatment showed that in groups with transplanted MSCs of various origins and MSC lysate from human Wharton's jelly cells, the intensity of DNA fragmentation in the nuclei of neurons in rat brain somatosensory cortex reliably decreased in1.8-2. 6 times compared with the group of control pathology (IR without treatment). Conclusions: Experimental 20-minute IR of the brain of rats forms a persistent focus of necrotic and apoptotic death of neurons, which is manifested by an increase in fragmented DNA (3.25 times). Intravenous transplantation of MSCs of various origin and lysate of MSCs from human Wharton jelly has a therapeutic effect in model IR, which is manifested by a decrease in the processes of neuro-destruction and neuroapoptosis in the area of ischemic brain damage Such effect is a link to the polytrophic mechanism of MSCs neuro-protective action.