Abstract Severe floods and droughts, including their back-to-back occurrences (weather whiplash), have been increasing in frequency and severity around the world. Improved understanding of systematic changes in hydrological extremes is essential for preparation and adaptation. In this study, we identified and quantified extreme wet and dry events globally by applying a clustering algorithm to terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (FO). The most intense events, ranked using an intensity metric, often reflect impacts of large-scale oceanic oscillations such as El Niño–Southern Oscillation and consequences of climate change. The severity of both wet and dry events, represented by standardized TWS anomalies, increased significantly in most cases, likely associated with intensification of wet and dry weather regimes in a warmer world, and consequently, exhibited strongest correlation with global temperature. In the Dry climate, the number of wet events decreased while the number of dry events increased significantly, suggesting a drying trend that may be attributed to climate variability and possible increases in irrigation and reliance on groundwater. In the Continental climate where temperature has risen faster than global average, dry events increased significantly. Characteristics of extreme events often showed strong correlations with global temperature, especially when averaged over all climates. These results suggest changes in hydrological extremes and underscore the importance of quantifying total water storage changes when studying hydrological extremes. Extending the GRACE/FO record, which spans 2002 to the present, is essential to continuously tracking changes in TWS and hydrological extremes.
Read full abstract