This study aims to investigate the coupling and harmonization between land ecological security (LES) and high-quality agricultural development (HAD) in the Han River Basin (HRB), China, with the objective of promoting harmonious coexistence between agriculture and ecosystems. Using 17 cities in the HRB as the research objects, an evaluation index system of two systems, LES and HAD, was constructed, analyzed, and evaluated via projective tracer modeling for multiple intelligent genetic algorithms (MIGA-PTM). The degree of coupling coordination (DCC) was used to quantitatively evaluate the coupling coordination development status of the two systems, the obstacle model (OM) was used to identify the main influencing factors, and the gray predictive model first-order univariate model (GM (1, 1)) was used to predict the DCC of the LES and HAD from 2025 to 2040. The results show the following: (1) the LES and HAD levels of the 17 cities in the HRB tended to increase during the study period, and there was a large gap between cities; (2) the spatial distributions of the DCCs of the LES and HAD in the HRB were uneven, with high values in the southern and low values in the central and northern parts, and the overall degree of coupling tended to fluctuate. The overall DCC showed a fluctuating upward trend; (3) the degree of obstacles, per capita water resources, greening coverage, and rate of return on financial expenditure are the main influencing factors; and (4) the prediction results of GM (1, 1) indicate that the LES and HAD of the HRB will be close to reaching the intermediate stage of coupling in 2035. This research offers critical insights into sustainable development practices that facilitate the alignment of agricultural growth with ecological preservation.