Triple negative breast cancer (TNBC) is an aggressive and immunogenic subtype of breast cancer. The absence of biomarker has given immune checkpoint inhibitors (ICIs) a broad prospect in this type of breast cancer. The infiltration of regulatory T cells (Tregs) expressing transcription factor forkhead box P3 (Foxp3) in the tumor microenvironment (TME) is the key factor leading to ICIs resistance. Therefore, elimination of tumor antigen-specific Tregs may be an important aspect of improving ICIs efficacy. In this study, it based on the Gene Expression Omnibus and The Cancer Genome Atlas database, along with in vivo and in vitro experimental models, to verified that the high expression of integrin-linked kinase (ILK) in TNBC is the key differential factor leading to the high infiltration of Foxp3+-Tregs in the TME. Then, we selected ILK-specific inhibitor, OSU-T315, to intervene in vitro and vivo. Importantly, we found that OSU-T315 blocked the secretion of CCL17/CCL22 in tumor cells by inhibiting the ILK/NF-κB pathway, resulting in the apoptosis of Foxp3+-Tregs and decreased programmed cell death-1 (PD-1) expression. Therefore, our findings indicate a novel mechanism of OSU-T315 with potential therapeutic application in TNBC.
Read full abstract