Multiple types of omics data contain a wealth of biomedical information which reflect different aspects of clinical samples. Multi-omics integrated analysis is more likely to lead to more accurate clinical decisions. Existing cancer diagnostic methods based on multi-omics data integration mainly focus on the classification accuracy of the model, while neglecting the interpretability of the internal mechanism and the reliability of the results, which are crucial in specific domains such as precision medicine and the life sciences. To overcome this limitation, we propose a trustworthy multi-omics dynamic learning framework (TMODINET) for cancer diagnostic. The framework employs multi-omics adaptive dynamic learning to process each sample to provide patient-centered personality diagnosis by using self-attentional learning of features and modalities. To characterize the correlation between samples well, we introduce a graph dynamic learning method which can adaptively adjust the graph structure according to the specific classification results for specific graph convolutional networks (GCN) learning. Moreover, we utilize an uncertainty mechanism by employing Dirichlet distribution and Dempster-Shafer theory to obtain uncertainty and integrate multi-omics data at the decision level, ensuring trustworthy for cancer diagnosis. Extensive experiments on four real-world multimodal medical datasets are conducted. Compared to state-of-the-art methods, the superior performance and trustworthiness of our proposed algorithm are clearly validated. Our model has great potential for clinical diagnosis.
Read full abstract