Abstract This article presents a detailed examination of circular target localization techniques for measuring robot pose and performing online pose correction. The investigated target localization methods include centroiding, ellipse fitting with point data and gradient information, and ellipse fitting methods with augmented and corrected input data. The performance of each method is evaluated in terms of accuracy and precision of measurements through experimental comparison with a laser tracker. This study provides technical and practical insights for selecting an appropriate target localization method in robotic applications. It also introduces a vision-based solution for robot relative error correction, comprising the calibration procedure and a closed-loop control with a proportional–integral-derivative controller for pose correction. Results show enhanced accuracy in robot positioning relative to workpiece, highlighting the effectiveness of the proposed solution in robotic drilling applications.
Read full abstract