AbstractIn this paper we prove a perturbative version of a remarkable Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) result. They prove non perturbative Birkhoff conjecture for centrally-symmetric convex domains, namely, a centrally-symmetric convex domain with integrable billiard is ellipse. We combine techniques from Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) with a local result by Kaloshin–Sorrentino (Ann. Math. 188(1):315–380, 2018) and show that a domain close enough to a centrally symmetric one with integrable billiard is ellipse. To combine these results we derive a slight extension of Bialy–Mironov (Ann. Math. 196(1):389–413, 2022) by proving that a notion of rational integrability is equivalent to the C0-integrability condition used in their paper.
Read full abstract