Though it is well known that insulin-like growth factor (IGF) binding protein 7 (IGFBP7) plays an important role in myogenesis and adipogenesis in mammals, its impact on the proliferation, differentiation, and lipid deposition in chicken primary myoblasts (CPM) and intramuscular preadipocytes remains unexplored. In the present study, we firstly examined the correlation between SNPs within the genomic sequence of the IGFBP7 gene and carcass and blood chemical traits in a F2 resource population by genetic association analysis, and found that a significant correlation between the SNP (4_49499525) located in the intron region of IGFBP7 and serum high-density lipoproteins (HDL). We then examined the expression patterns of IGFBP7 across different stages of proliferation and differentiation in CPMs and intramuscular preadipocytes via qPCR, and explored the biological functions of IGFBP7 through gain- and loss-of-function experiments and a range of techniques including qPCR, CCK-8, EdU, flow cytometry, Western blot, immunofluorescence, and Oil Red O staining to detect the proliferation, differentiation, and lipid deposition in CPMs and intramuscular preadipocytes. We ascertained that the expression levels of the IGFBP7 gene increased as cell differentiation progresses in CPMs and intramuscular preadipocytes, and that IGFBP7 promotes the proliferation and differentiation of these cells, as well as facilitates intracellular lipid deposition. Furthermore, we investigated the regulatory mechanism of IGFBP7 expression by using co-transfection strategy and dual-luciferase reporter assay, and discovered that the myogenic transcription factors (MRF), myoblast determination factor (MyoD) and myogenin (MyoG), along with the adipocyte-specific transcription factor (TF) CCAAT/enhancer-binding protein α (C/EBPα), can bind to the core transcription activation region of the IGFBP7 promoter located 500 bp upstream from the transcription start site, thereby promoting IGFBP7 transcription and expression. Taken together, our study underscores the role of IGFBP7 as a positive regulator for myogenesis and adipogenesis, while also elucidating the functional and transcriptional regulatory mechanisms of IGFBP7 in chicken skeletal muscle development and intramuscular adipogenesis.
Read full abstract