In electrical machinery, the rotor windings’ internal short-circuit faults are addressed by the instantaneous over-current protection of the power electronic excitation device, which has low sensitivity and has difficulty meeting the safety requirements. In this paper, a rotor windings’ internal short-circuit fault protection method is proposed based on the harmonic characteristics of the circulating current between stator branches. The magnetomotive force distribution of the short-circuit coils in the rotor windings is theoretically deduced, and the characteristic frequencies of the circulating current between stator branches are analyzed. On this basis, the protection criterion of the rotor windings’ internal short-circuit fault is constructed by using the harmonic component of the circulating current. Then, an analytic model of the variable-speed pumped storage unit is established based on the multi-loop method, and the finite element method is used to verify the correctness of the proposed modeling method. An actual large variable-speed pumped storage unit is taken as an example, and the possible faults under different slip ratios are simulated. In the simulation results, the stator branch circulation has the obvious characteristic frequency harmonic components, which is consistent with the theoretical analysis. It verifies the effectiveness of the proposed protection method. Finally, it is analyzed and verified that the proposed protection has a strong maloperation prevention ability under other kinds of faults.
Read full abstract