The present work addresses the production of nitrogen oxides in ICEs burning hydrogen mixed with methane. A mathematical model that allows the calculation of nitrogen oxide emissions from such combustion was built; this model uses the extended chemical kinetic mechanism of Zeldovich. Numerical simulations were carried out on the production of NO, varying the following variables: proportion of H2 to CH4, the equivalence ratio of the reactant mixture, the compression ratio, and the engine speed. The essential purpose was to assess how NO production is affected by the mentioned variables. The main assumptions were (i) Otto cycle; (ii) instantaneous combustion; (iii) chemical equilibrium reached just at the end of combustion; (iv) the formation of NO only during the expansion stroke of pistons. Results were obtained for various proportions of hydrogen and methane, various equivalence ratios, speeds of rotation, and compression ratios of an engine. In short, the results obtained in the current work show that the lowering of the equivalence ratio leads to a lower concentration of NO; that increasing the compression ratio also lowers the concentration of NO; that NO production occurs until shortly after the beginning of the expansion stroke; and finally, that the NO concentration in the engine exhaust is not very sensitive to the H2/CH4 ratio in the fuel mixture.
Read full abstract