YidC is a membrane protein that plays an important role in inserting newly generated proteins into lipid membranes. The Sec-dependent complex is responsible for inserting proteins into the lipid bilayer in bacteria. YidC facilitates the insertion and folding of membrane proteins, both in conjunction with the Sec complex and independently. Additionally, YidC acts as a chaperone during the folding of proteins. Multiple investigations have conclusively shown that Gram-positive bacterial YidC has Sec-independent insertion mechanisms. Through the use of microsecond-level all-atom molecular dynamics (MD) simulations, we have carried out an in-depth investigation of the YidC protein originating from Gram-negative bacteria. This research sheds light on the significance of multiple domains of the YidC structure at a detailed molecular level by utilizing equilibrium MD simulations. Specifically, multiple models of YidC embedded in the lipid bilayer were constructed to characterize the critical role of the C2 loop and the periplasmic domain (PD) present in Gram-negative YidC, which is absent in its Gram-positive counterpart. Based on our results, the C2 loop plays a role in the overall stabilization of the protein, most notably in the transmembrane (TM) region, and it also has an allosteric influence on the PD region. We have found critical inter- and intradomain interactions that contribute to the stability of the protein and its function. Finally, our study provides a hypothetical Sec-independent insertion mechanism for Gram-negative bacterial YidC.
Read full abstract