Muscle fibers from fourth and fifth instar caterpillars were examined with scanning and thin section electron microscopy. Scanning micrographs showed that early fifth instar specimens had a population of cells lying beneath the basal lamina over the surface of the muscle fiber and in conjunction with tracheoles and nerves. At least two cell types were present. One type could be categorized as tracheoblasts by their close association with the tracheoles and the presence of taenidia within the tracheoblast cytoplasm in sectioned material. A second cell type, characterized by long filamentous processes, contained extensive rough endoplasmic reticulum and cisternae swollen with an electron-dense substance similar in appearance to the basal lamina. This ultrastructural appearance is characteristic of vertebrate fibroblasts and certain types of insect hemocytes. Early and late fourth instar specimens had few cells on their muscle fiber surfaces. Measurements of the basal lamina thickness were taken from thin sections of non-digested muscle fibers of early fourth, late fourth, and early fifth instar animals. The results showed that the basal lamina underwent a large increase in thickness between the fourth and fifth instars. The proliferation of cells which appeared to be in an actively synthesizing state paralleled the increase in basal lamina thickness. This suggests the hypothesis that these cells are active in connective tissue formation, and contribute to the formation of the basal lamina that lies over both them and the muscle fiber.
Read full abstract