Changes in leaf phenology from warming spring and autumn temperatures have lengthened the temperate zone growing "green" season and breeding window for migratory birds in North America. However, the fitness benefits of an extended breeding season will depend, in part, on whether species have sufficient dietary flexibility to accommodate seasonal changes in prey availability. We used fecal DNA metabarcoding to test the hypothesis that seasonal changes in the diets of the insectivorous, migratory black-throated blue warbler (Setophaga caerulescens) track changes in the availability of arthropod prey at the Hubbard Brook Experimental Forest, New Hampshire, USA. We examined changes across the breeding season and along an elevation gradient encompassing a 2-week difference in green season length. From 98 fecal samples, we identified 395 taxa from 17 arthropod orders; 242 were identified to species, with Cecrita guttivitta (saddled prominent moth), Theridion frondeum (eastern long-legged cobweaver), and Philodromus rufus (white-striped running crab spider) occurring at the highest frequency. We found significant differences in diet composition between survey periods and weak differences among elevation zones. Variance in diet composition was highest late in the season, and diet richness and diversity were highest early in the season. Diet composition was associated with changes in prey availability surveyed over the green season. However, several taxa occurred in diets more or less than expected relative to their frequency of occurrence from survey data, suggesting that prey selection or avoidance sometimes accompanies opportunistic foraging. This study demonstrates that black-throated blue warblers exhibit diet flexibility and track seasonal changes in prey availability, which has implications for migratory bird responses to climate-induced changes in insect communities with longer green seasons.
Read full abstract