The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9−36) and GIP(3−42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9−39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6–8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9−36), GIP(3−42), Ex(9−39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9−36) significantly (p<0.001) increased islet density per mm2 tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3−42) and Ex(9−39) treatment. While GLP-1(9−36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3−42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9−36) and GIP(3−42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9−36) and GIP(3−42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.
Read full abstract