BackgroundPerioperative neurocognitive disorders (PND) is a neurological complication in the perioperative period, which may lead to severe poor prognosis. Dexmedetomidine (Dex) is a commonly used sedative in the perioperative period. However, the effect of intraoperative anesthetic Dex on PND remains complicated and confusing. MethodsPND model was established using aged male mice, treated with Dex, and subjected to behavioral tests. The effect of Dex on pyroptosis was assessed by western blot, enzyme-linked immunosorbent assay and immunofluorescence. In addition, the miRNA expression profile of PND mice was identified by small RNA sequencing and performed PCR to detect miRNAs. Finally, the effect of miRNA on mice neuron pyroptosis was verified in vitro. ResultsWe found postoperative cognitive was declined in PND mice compared with control group, while preoperative injection of Dex improved short-term working memory and anxious exploration behavior, alleviated the cognitive impairment. Intriguingly, Dex ameliorated hippocampal inflammation and neuron pyroptosis in PND mice as evidenced by the reduced GSDMD, NLRP3, IL-1β and IL-18. The miRNA expression profile of PND mice hippocampus was disordered, including 5 miRNAs up-regulated and 17 miRNAs down-regulated, compared to the sham group. Dysregulated miRNAs were mainly enriched in biological functions related to neuronal development and signaling pathways related to pyroptosis. MiR-184-3p was the key miRNA, overexpression of miR-184-3p blocked the inhibitory effect of Dex on neuron pyroptosis, which was manifested as increased expression of GSDMD and NLRP3, increased inflammatory factors IL-1β and IL-18. ConclusionsThis study revealed that miR-184-3p may mediate NLRP3 to prevent the alleviating effect of Dex on PND, which provides a new potential way to improve the therapeutic intervention of PND.
Read full abstract