To investigate the mechanisms behind the effects of acupuncture in Traditional Chinese Medicine, we delved into the adenosine triphosphate/peripheral purinergic P2X receptor 3 (ATP/P2X3) receptor signaling system as an indicator of the body's energy state, commonly referred to as "Qi". The tail-flick test was utilized to explore the impact of acupuncture on pain tolerance threshold (PTT) in mice, while also assessing adenosine (ADO) levels and adenylate energy charge (EC) at Zusanli (ST36). The study further investigated the dose-dependent effects of acupuncture on PTT and ADO levels at Zusanli (ST36). To shed light on the underlying mechanisms of acupuncture's effects, the study examined the impact of ATP, a P2X3 receptor antagonist, and adenosine disodium on PTT following acupuncture administration. Acupuncture at Zusanli (ST36) led to significant improvements in PTT in mice, with the most effective interventions being twirling for 2 min and needle retention for 28 min. These interventions also resulted in significant increases in ATP levels. The effects of acupuncture were further augmented by administration of different doses of ATP at Zusanli (ST36), and pretreatment with a P2X3 receptor antagonist decreased PTT. Adenylate EC peaked at 30 min after intraperitoneal injection of ATP, and pretreatment with various doses of i.p. ATP 30 min prior to acupuncture increased PTT in a dose-dependent manner. Additionally, pretreatment with an i.p. or intramuscular injection of adenosine disodium enhanced the effects of acupuncture. This research provides compelling evidence that ATP is involved in the regulation of PTT through acupuncture, revealing new avenues for achieving enhanced clinical outcomes.
Read full abstract