Although biological scaffolds containing bone morphogenetic protein-2 (BMP-2) have been widely used for osteogenic therapy, achieving stable and controlled release of BMP-2 remains a challenge. Herein, a novel BMP-2 sustained-release system composed of carboxymethyl chitosan (CMCS)/polyethylene glycol (PEG)/heparin sulfate (HS) (CMCS/PEG/HS) was constructed with a Schiff base reaction, yielding an injectable hydrogel for the release of BMP-2 in a controlled manner. For the CMCS/PEG/HS/BMP-2 hydrogel, the HS component had a negatively charged structure, which can bind to positively charged growth factors and prevent early hydrolytic metabolism of growth factors, thus achieving sustainable release of BMP-2. Notably, the release of BMP-2 in hydrogels was dependent mainly on degradation of the hydrogel matrix rather than simple diffusion. Generally, the CMCS/PEG/HS/BMP-2 hydrogel scaffold demonstrated excellent recoverability, good injectability, excellent biocompatibility and high adaptability, as well as efficient self-healing features to occupy irregularly shaped bone marrow cavities. The in vitro results revealed that the CMCS/PEG/HS/BMP-2 hydrogel promoted the osteogenic differentiation of MC3T3-E1 cells. Furthermore, the in vivo results suggest that the hydrogel has promising osteogenic effects that promote bone regeneration in a skull bone defect model. The injectable hydrogel scaffold shows great promise for bone treatment in the future.
Read full abstract