Direct numerical simulation (DNS) has been employed with success in a variety of oceanographic applications, particularly for investigating the internal dynamics of Kelvin–Helmholtz (KH) billows. However, it is difficult to relate these results directly with observations of ocean turbulence due to the significant scale differences involved (ocean shear layers are typically on the order of tens to hundreds of meters in thickness, compared to DNS studies, with layers on the order of one to tens of centimeters). As efforts continue to inform our understanding of geophysical-scale turbulence by extrapolating DNS results, it is important to understand the impact of model setup and initial conditions on the resulting turbulent quantities. Given that geophysical-scale measurements, whether through microstructures or other techniques, can only provide estimates of averaged TKE quantities (e.g., TKE dissipation or buoyancy flux), it may be necessary to compare mean turbulent quantities derived from DNS (i.e., across one or more complete billow evolutions) with ocean measurements. In this study, we analyze the effect of domain length and initial velocity noise on resulting turbulent quantities. Domain length is important, as dimensions that are not integer multiples of the natural KH billow wavelength may compress or stretch the billows and impact their energetics. The addition of random noise in the initial velocity field is often used to trigger turbulence and suppress secondary instabilities; however, the impact of noise on the resulting turbulent energetics is largely unknown. In this study, we conclude that domain lengths on the order of 1.5 times the natural wavelength or less can affect the resulting turbulent energetics by a factor of two or more. We also conclude that increasing the amplitude of random initial velocity noise decreases the resulting turbulent energetics, but that different realizations of the random noise field may have an even greater impact than amplitude. These results should be considered when designing a DNS experiment.
Read full abstract