A phenomenological model is proposed to estimate the initial thickness of the liquid microlayer forming beneath a vapour bubble growing on a solid surface upon nucleate boiling. The model employs an analogy between the microlayer formation and the classic plate withdrawal problem. It calculates the microlayer thickness by considering it as a Landau–Levich film, where the thickness is a function of the meniscus speed and radius of curvature. Given the nearly hemispherical shape of the bubble during the early growth stage when the microlayer is first deposited, we assume that the meniscus speed can be approximated by the bubble expansion rate, and estimate the meniscus curvature using the Rayleigh equations. Unlike previous theories that assume that the bubble radius growth is proportional to the square root of time, the proposed model does not rely on any specific law of growth for vapour bubbles. The model is validated for predicting the microlayer thickness in water and ethanol, showing good agreement with experimental measurements and empirical correlations. Subsequent analyses of the microlayer interface profile address inconsistent reports – some described a wedge-like shape, whereas others reported a slight outward curvature with decreasing thickness in the outer region. This discrepancy is attributed to a reduction in the expansion rate of the microlayer's outer edge, particularly when the bubble reaches its maximum width. Our model provides insights into microlayer dynamics, essential to boiling heat transfer, as the evaporative heat flux through the microlayer is very sensitive to its initial thickness.
Read full abstract