This work aims at investigating the influence of the initial concentrations of carbon (glucose) and organic nitrogen (yeast extract) sources on Streptomyces rimosus ATCC10970 secondary metabolism in the stirred tank bioreactors. Additionally, glucose utilisation, biomass formation, pH, redox potential and dissolved oxygen levels, and the morphological development of S. rimosus pseudomycelium were studied. Eighteen secondary metabolites were detected by mass spectrometry and identified with the use of the authentic standard, or putatively with the use of literature and database of secondary metabolites. Varied initial yeast extract concentration acted much stronger on the formation of secondary metabolites than glucose did. For example, oxytetracycline was not biosynthesised at high yeast extract concentration while the formation of three other metabolites was enhanced under these conditions. In the case of glucose its increasing initial concentration led to higher secondary metabolite levels with the exception of an unnamed angucycline. High initial yeast extract concentration also drastically changed S. rimosus pseudomycelial morphology from the pelleted to the dispersed one. Ultimately, the cultivation media with the varied initial levels of carbon and nitrogen sources were proved to have the marked effect on S. rimosus secondary metabolism and to be the simplest way to either induce or block the formation of the selected secondary metabolites.
Read full abstract