We investigated the formation of small organosilicon molecules─potential precursors to silicon-carbide dust grains ejected by dying carbon-rich asymptotic giant branch stars─in the gas phase via the reaction of atomic carbon (C) in its 3P electronic ground state with silane (SiH4; X1A1) using the crossed molecular beams technique. The reactants collided under single collision conditions at a collision energy of 13.0 ± 0.2 kJ mol-1, leading to the formation of the silylenemethyl radical (HCSiH2; X2B2) via the unimolecular decomposition of triplet silaethylene (H2CSiH2; a3A″). The silaethylene radical was formed via hydrogen migration of the triplet silylmethylene (HCSiH3; X3A″) radical, which in turn was identified as the initial collision complex accessed via the barrierless insertion of atomic carbon into the silicon-hydrogen bond of silane. Our results mark the first observation of the silylenemethyl radical, where previously only its thermodynamically more stable methylsilylidyne (CH3Si; X2A″) and methylenesilyl (CH2SiH; X2A') isomers were observed in low-temperature matrices. Considering the abundance of silane and the availability of atomic carbon in carbon-rich circumstellar environments, our results suggest that future astrochemical models should be updated to include contributions from small saturated organosilicon molecules as potential precursors to pure gaseous silicon-carbides and ultimately to silicon-carbide dust.
Read full abstract