The effects of Ca2+ on antioxidative enzymes and indole-3-acetic acid (IAA) oxidase during adventitious rooting were investigated in mung bean (Vigna radiata). CaCl2 significantly promoted the formation and growth of adventitious roots. EGTA (a Ca2+ chelator) or ruthenium red (a Ca2+-channel blocker) significantly inhibited root formation and growth, but these inhibitory effects could be partially reversed by CaCl2. Furthermore, inclusion of 5 mM CaCl2 significantly increased superoxide dismutase (SOD) activity by 10% at 3 h and catalase (CAT) activity by an average of 29.6% at each time point. CaCl2 decreased peroxidase (POD) activity by 9.4% and 21% at 12 and 24 h, respectively, and ascorbate peroxidase (APX) activity by an average of 13.9% at each time point. These CaCl2-induced changes in enzymatic activities were similar to changes caused by indole-3-butyric acid (IBA). Treatment with EGTA or ruthenium red decreased SOD activity by an average of 18.4% and 15.2%, respectively; POD activity by 27.4% and 57.6%, respectively; APX activity by 10.3% and 15.6%, respectively; and CAT activity by 19.3% and 5.2%, respectively, when compared with CaCl2. In addition, CaCl2 increased IAA oxidase activity by an average of 5.5% beginning at 6 h, whereas EGTA significantly decreased IAA oxidase activity by 29.2%, 22.9%, and 13.5% at 6, 9, and 12 h, respectively. The inhibitory effects of EGTA could be partially suppressed by addition of CaCl2. These results imply that the stimulative effect of Ca2+ on adventitious rooting is partially related to Ca2+-induced changes in the activities of antioxidative enzymes and IAA oxidase.
Read full abstract