Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties. A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities. Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy. The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.
Read full abstract