Casein kinase 2 (CK2) has become a potential therapeutic target in gastric cancer; however, the underlying mechanism remains incompletely understood. TAp73, a structural homolog of the tumor suppressor p53, acts as a critical regulator of the Warburg effect. Recent study reveals that aberrant CK2 signaling is able to inhibit TAp73 function. Here we determine that TAp73 is overexpressed in AGS-1 but not in SNU-5 gastric cancer cell line as compared with normal gastric cells. In addition, we show that TAp73 expression is required for the maintenance of glucose uptake and lactate release in AGS-1 but not in SNU-5 gastric cancer cells. Importantly, the use of CX-4945, a selective inhibitor of protein kinase CK2, inhibits cell growth and invasion, and promotes cell apoptosis in AGS-1 with decreased TAp73 expression as well as downregulated glucose uptake and lactate release. Although TAp73 knockdown resulted in significant decreases in TAp73 expressions in SNU-5 cell line, no differences in glucose uptake and lactate release were observed between SNU-5 and normal gastric cells. Moreover, TAp73 gene overexpression promotes glucose uptake and lactate release and abolishes the anti-cancer effects of CX-4945 in gastric cancer cell line AGS-1. The impacts of CX-4945 on glycolysis and tumorigenesis were strongly limited in SNU-5 gastric cancer cell line. These findings suggest that CX-4945 elicits an anti-Warburg effects in gastric cancer overexpressing Tap73 and inhibits gastric tumorigenesis.
Read full abstract