Background & aimsNucleobindin-2 (NUCB2)/nesfatin-1, a signal with recognized anorexigenic and insulin-sensitizing properties in peripheral tissues, is expressed within the hypothalamus. However, the potential involvement of central nesfatin-1 signaling in the pathophysiology of hepatic steatosis remains unknown. This study aimed to determine whether and how central NUCB2/nesfatin-1 plays a role in liver steatosis. MethodsWe generated Nucb2 knockout (Nucb2−/−) rats and administered continuous intracerebroventricular (ICV) nesfatin-1 infusion, while observing its effect on liver steatosis. The molecular mechanism of action of nesfatin-1 was elucidated via proteomics, phosphoproteomics and molecular biology methods. ResultsHerein, we present compelling evidence indicating diminished NUCB2 expression in the hypothalamus of obese rodents. We demonstrated that chronic ICV infusion of nesfatin-1 mitigated both diet-induced obesity and liver steatosis in high-fat diet (HFD)-fed Nucb2−/− rats by regulating hypothalamic endoplasmic reticulum (ER) stress and Akt phosphorylation. Furthermore, we revealed that the increase in hypothalamic insulin resistance (IR) and ER stress induced by tunicamycin infusion or Ero1α overexpression exacerbated hepatic steatosis and offset the favorable influence of central nesfatin-1 on hepatic steatosis. The metabolic action of central nesfatin-1 is contingent upon vagal nerve transmission to the liver. Mechanistically, nesfatin-1 impedes ER stress and interacts with Ero1α to repress its Ser106 phosphorylation. This leads to the enhancement of Akt activity in the hypothalamus, culminating in the inhibition of hepatic lipogenesis. ConclusionsThese findings underscore the importance of hypothalamic NUCB2/nesfatin-1 as a key mediator in the top-down neural mechanism that combats diet-induced liver steatosis.
Read full abstract