The hexammineruthenium (HAR) and ferricyanide reductase activities of Complex I (H +-translocating NADH:ubiquinone reductase) from Paracoccus denitrificans and bovine heart mitochondria were studied. The rates of HAR reduction are high, and its steady-state kinetics is similar in both P. denitrificans and bovine Complex I. The deamino-NADH:HAR reductase activity of Complex I from both sources is significantly higher than the respective activity in the presence of NADH. The HAR reductase activity of the bacterial and mitochondrial Complex I is similarly and strongly pH dependent. The p K a of this activity could not be determined, however, due to low stability of the enzymes at pH values above 8.0. In contrast to the high similarity between bovine and P. denitrificans Complex I as far as HAR reduction is concerned, the ferricyanide reductase activity of the bacterial enzyme is much lower than in mitochondria. Moreover, ferricyanide reduction in P. denitrificans, but not bovine mitochondria, is partially sensitive to dicyclohexylcarbodiimide (T. Yagi, Biochemistry 26 (1987) 2822–2828). On the other hand, the inhibition of ferricyanide reduction by high concentration of NADH, a typical phenomenon in bovine Complex I, is much weaker in the bacterial enzyme. The functional differences between the two enzymes might be linked to the properties of their binuclear Fe–S clusters.
Read full abstract