The development of resistance to chemotherapy in esophageal cancer represents a significant challenge in cancer treatment. Therefore, our study aimed to identify effective therapeutic strategies by examining the molecules involved in this chemoresistance. We consistently observed an increase in the expression of Mcl-1 in cells exposed to both short and long-term treatment with cisplatin, a drug commonly used in esophageal cancer therapy. Functional analysis showed that Mcl-1 regulates esophageal cancer cell response to cisplatin treatment. Notably, this upregulation of Mcl-1 was not dependent on eukaryotic initiation factor 4E (eIF4E). Instead, it was associated with increased stability due to the activation of Akt. Capivasertib, a potent pan-Akt kinase drug, significantly decreased Mcl-1 level via inhibiting Akt signaling pathway in chemo-resistant cells. In addition, capivasertib not only decreased the viability of chemo-resistant esophageal cancer cells but also synergistically enhanced the effects of cisplatin. In multiple mouse models, representing both chemo-resistant and chemo-sensitive esophageal cancer, capivasertib administered at non-toxic doses demonstrated remarkable efficacy. It significantly extended the overall survival of the mice. Our research underscores the pivotal role of Akt-associated Mcl-1 upregulation in the development of chemo-resistance in esophageal cancer cells. Furthermore, it highlights the potential of capivasertib to reverse this resistance mechanism.
Read full abstract