Oxidative stress is a critical pathogenic factor for age-related macular degeneration (AMD). Autophagy serves as a mechanism to counteract oxidative stress. LAMTOR1 regulates mTORC1 activity by recruiting or disassembling it on the lysosome under the addition or deprivation of amino acids. This regulation inhibits or enhances autophagy. Our study investigates whether oxidative stress impacts LAMTOR1, thereby adapting to oxidative conditions. We employed oxidative stressors, menadione (VK3) and 4-hydroxynonenal (4-HNE), and observed a reduction of LAMTOR1 in both human and mouse retinal pigment epithelium (RPE) following short-term (1h) and prolonged exposures (24h). Nrf2 overexpression increased both lamtor1 mRNA and LAMTOR1 protein in the RPE. To determine if Nrf2 regulates lamtor1 transcription, we cloned the deletion mutants of the lamtor1 promoter into a luciferase reporter. Although the promoter contained antioxidant response elements, transcriptional activity depended on the interaction between Nrf2 and the constructs containing the transcriptional start site. Moreover, Nrf2-driven transcription was significantly reduced by an inhibitor of histone acetyltransferase, p300. Correspondingly, Nrf2 overexpression increased levels of acetylated histone3 and p300. The reduction in LAMTOR1 by 4-HNE was reversed by pepstatin A and NH4Cl which block lysosomal degradation. 4-HNE increased TFEB nuclear translocation which was reversed by LAMTOR1 overexpression. In vivo, LAMTOR1 levels decreased in the photoreceptor and RPE layers of NaIO3-injected mice, compared to PBS-injected controls. In conclusion, oxidative injury reduces LAMTOR1, predominantly through lysosomal degradation although Nrf2-mediated histone acetylation enhances lamtor1 transcription. This study reveals a previously unrecognized regulatory mechanism of lamtor1 by oxidative stress, suggesting a novel role for LAMTOR1 in the pathogenesis of AMD.