Hypoxia conditions promote the adaptation and progression of non-small-cell lung cancer (NSCLC) via hypoxia-inducible factors (HIF). HIF-1α may regulate estrogen receptor β (ERβ) and promote the progression of NSCLC. The phytochemical homoharringtonine (HHT) exerts strong inhibitory potency on NSCLC, with molecular mechanism under hypoxia being elusive. The effects of HHT on NSCLC growth were determined by cell viability assay, colony formation, flow cytometry, and H460 xenograft models. Western blotting, molecular docking program, site-directed mutagenesis assay, immunohistochemical assay, and immunofluorescence assay were performed to explore the underlying mechanisms of HHT-induced growth inhibition in NSCLC. HIF-1α/ERβ signaling-related E2F1 is highly expressed and contributes to unfavorable survival and tumor growth. The findings in hypoxic cells, HIF-1α overexpressing cells, as well as ERβ- or E2F1-overexpressed and knockdown cells suggest that the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC cell growth. HHT suppresses HIF-1α/ERβ/E2F1 signaling via the ubiquitin-proteasome pathway, which is dependent on the inhibition of the protein expression of HIF-1α and ERβ. Molecular docking and site-directed mutagenesis revealed that HHT binds to the GLU305 site of ERβ. HHT inhibits cell proliferation and colony formation and promotes apoptosis in both NSCLC cells and xenograft models. The formation of the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC growth and reveals a novel molecular mechanism by which HHT induces cell death in NSCLC.
Read full abstract