To investigate the therapeutic potential of 5-Fluorouracil-based analogues, a straightforward synthetic technique was employed to synthesize a novel series of 5-arylurea uracil derivatives (AUFU01-03) and aryl-urea derivatives bearing perfluorophenyl (AUPF01-03). Reliable tools such as infrared (IR), Nuclear Magnetic Resonance (NMR) spectra, and elemental analyses were utilized to confirm the chemical structures and purity of these compounds. In comparison to healthy noncancerous control skin fibroblast cells (BJ-1), we examined the antiproliferative efficacy of compounds (AUFU01-03) and (AUPF01-03) against specific human malignant cell lines of the breast (MCF-7), and colon (HCT-116). Based on the MTT experiment results, compounds AUFU03 and AUPF01-03 possessed highly cytotoxic effects. Among these, cytotoxicity was demonstrated by compounds AUPF01-03 with IC50 values (AUPF01, IC50 = 167 ± 0.57 µM, AUPF02, IC50 = 23.4 ± 0.68 µM and AUPF03, IC50 = 28.8 ± 1.13 µM, respectively, on MCF-7), relative to 5-Fluorouracil as reference drug (IC50 = 160.7 ± 0.22 µM). Compound AUPF01 showed safety on BJ-1 cells up to a concentration of 100 µM (% cytotoxicity = 3.9 ± 0.42 %), so AUPF01 was selected for further studies. At the gene, the expression levels of BCL-2 gene were decreased significantly in MCF-7 + 5-FU and reached the lowest level in MCF-7 + AUPF01. In contrast, the expression levels of pro-apoptotic genes (p53 and BAX) were increased in MCF-7 + 5-FU, and reached a significantly higher level in MCF-7 + AUPF01. Apoptosis/necrosis assays demonstrated that AUPF01 induced S and G2/M phase cell cycle arrest in MCF-7 cells. Moreover, the efficacy of these compounds against anti-cancer protein receptors was assessed using molecular docking. The results indicated that compound AUPF01 exhibited high binding energies, effectively interacting with the active sites of crucial proteins such as EGFR, CDK2, ERalfa, BAX1, BCL2, and P53. These interactions involved a diverse range of chemical bonding types, suggesting the potential of these substances to inhibit enzyme activities. Moreover, computational ADMET analyses of these compounds demonstrated compliance with Lipinski’s criteria, indicating favorable physicochemical properties. Additionally, molecular dynamics (MD) simulations revealed stable complexes of AUPF01 with EGFR, CDK2, ERalfa, BAX1, BCL2, and P53, as evidenced by (RMSD) values, RMSF values, and (SASA) values for the respective complexes.
Read full abstract