Spinocerebellar ataxia type 2 (SCA2) exhibits mainly cerebellar and oculomotor dysfunctions but also, frequently, cognitive impairment and neuropsychological symptoms. The mechanism of the progression of SCA2 remains unclear. This study aimed to evaluate longitudinal structural changes in the brains of SCA2 patients based on atrophy rate. The OpenNeuro Dataset ds001378 was used. It comprises the demographic data and two magnetic resonance images each of nine SCA2 patients and 16 healthy controls. All structural images were preprocessed using FreeSurfer software, and each region's bilateral volume was summed. Atrophy rates were calculated based on the concept of symmetrised percent change and compared between SCA2 patients and healthy controls using non-parametric statistics. As post hoc analysis, correlation analysis was performed between infratentorial volume ratio and the accumbens area atrophy rates in SCA2 patients. There were no significant differences between groups for age, gender, and the time between scans. Statistical analysis indicated a significantly larger atrophy rate of the accumbens area in SCA2 patients than in controls. Additionally, the infratentorial volume ratio and accumbens area atrophy rates showed moderate negative correlation. This study found that nucleus accumbens (NAc) atrophy was significantly accelerated in SCA2 patients. Anatomically, the NAc is densely connected with infratentorial brain regions, so it is reasonable to posit that degeneration propagates from the cerebellum and brainstem to the NAc and other supratentorial areas. Functionally, the NAc is essential for appropriate behaviour, so NAc degeneration might contribute to neuropsychological symptoms in SCA2 patients.