The study of facial profiles in the dental field is very important for the diagnosis and the dental and orthodontic treatment plan. The aim of this study is to analyze the three-dimensional morphology of the faces of 269 growing patients with Class I and II occlusions, focusing on children aged between 6 and 9 years old. The analysis was conducted using a non-invasive computerized system, which allowed for the automatic collection of facial landmarks and the subsequent reconstruction of three-dimensional coordinates. The sample comprised 269 children within the specified age range. Each child's facial features were captured using the non-invasive computerized system, which utilized two infrared CCD cameras, real-time hardware for label recognition, and software for three-dimensional landmark reconstruction. Sixteen cutaneous facial landmarks were automatically collected for each participant. From these landmarks, 10 angular and 15 linear measurements, as well as five direct distance rates, were derived. The mean values for each age class were calculated separately for children with bilateral Angle Class I occlusion and compared with those for children with bilateral Class II occlusion. In all children, the left and right occlusal classes were measured as suggested by Katz. The analysis revealed notable differences, primarily in the three-dimensional angular measurements between children with Class I and II occlusions. Specifically, Class II children exhibited more convex faces in the sagittal plane and a less prominent lower jaw compared to Class I children. However, no significant differences were observed in linear measurements, except for the lower facial height rate, which varied inconsistently across age groups between the two occlusion types. the findings of this research highlight distinct three-dimensional facial morphological differences between children with Class I and II occlusions. While Class II children tended to have more convex facial profiles and less prominent lower jaws, linear measurements showed minimal variation between the two occlusion types. These results underscore the importance of three-dimensional analysis in understanding facial morphology in growing patients with different occlusal patterns.
Read full abstract