The development and utilization of urban underground space represents a crucial strategy for achieving sustainable urban development. Three-dimensional (3D) geological models provide a data foundation and technical support for research in urban planning and construction, as well as the prevention and control of environmental geological issues. However, current urban 3D geological modeling generally faces the challenge of multi-source heterogeneous modeling data. This often necessitates varying degrees of generalization in data processing, resulting in the majority of current urban 3D geological models being relatively coarse and insufficient to fulfill the demand for detailed geological information in contemporary urban development and management. Therefore, determining how to formulate or optimize the 3D geological modeling schemes to enhance the utilization of multi-source heterogeneous data is a key challenge in current urban 3D geological modeling. This study, taking the 3D geological structure modeling of Wuhan’s metropolitan development area (MDA) as an example, develops an automated scheme for standardizing modeling data based on multi-scale geological chronostratigraphy. By utilizing the standardized stratigraphy as a unified and independent geological framework for layered modeling, a high-precision 3D geological model of Wuhan’s MDA, characterized by large-scale and ultra-complex geological conditions, is constructed through a methodology that integrates the global discrete constrained points modeling approach with the global layered modeling approach, without generalizing the multi-source heterogeneous modeling data. This research not only holds significant practical implications for the prevention and control of comprehensive urban geological issues in Wuhan but also provides novel technical insights into the methodology of 3D urban geological modeling.
Read full abstract