In recent years, a growing number of enterprises have taken different steps to reduce the energy consumption and carbon emissions of information and communication technology (ICT) assets. Because of the expansion of digitalization and the need for rapid access to information, enterprises have been compelled to optimize the location and utilization of their ICT hardware. In this context, this paper presents a novel method based on a mixed-integer linear programming approach for optimizing the physical location and task allocation of printing devices in office floor plans considering the power usage of the ICT assets, the costs related to the purchase and service of the individual devices, operating costs, and distance between employees and printing devices. The applicability of the proposed model is illustrated using the case study of a company with 100 functional departments located in several office buildings across Poland. The results reveal that the model guarantees the execution of all printing tasks and satisfies the functionality requirements expressed by the users of the workstations. Moreover, the selection of more energy-efficient printing devices leads to a considerable reduction in electricity consumption, related not only to the direct operation of these devices but also to their modes of operation (work, idle, or sleep). Such results also bring tangible effects in reducing carbon dioxide emissions, which is particularly important for businesses operating in countries where fossil fuels still dominate the energy mix.