We previously determined, by X-ray crystallography, the three-dimensional structure of a complex between influenza virus N9 neuraminidase (NA) and the Fab fragments of monoclonal antibody NC-41 [P. M. Colman, W. G. Laver, J. N. Varghese, A. T. Baker, P. A. Tulloch, G. M. Air, and R. G. Webster, Nature (London) 326:358-363, 1987]. This antibody binds to an epitope on the upper surface of the NA which is made up of four polypeptide loops over an area of approximately 600 A2 (60 nm2). We now describe properties of NC-41 and other monoclonal antibodies to N9 NA and the properties of variants selected with these antibodies (escape mutants). All except one of the escape mutants had single amino acid sequence changes which affected the binding of NC-41 and which therefore are located within the NC-41 epitope. The other one had a change outside the epitope which did not affect the binding of any of the other antibodies. All the antibodies which selected variants inhibited enzyme activity with fetuin (molecular weight, 50,000) as the substrate, but only five, including NC-41, also inhibited enzyme activity with the small substrate N-acetylneuramin-lactose (molecular weight, 600). These five probably inhibited enzyme activity by distorting the catalytic site of the NA. Isolated, intact N9 NA molecules form rosettes in the absence of detergent, and these possess high levels of hemagglutinin activity (W.G. Laver, P.M. Colman, R.G. Webster, V.S. Hinshaw, and G.M. Air, Virology 137:314-323, 1984). The enzyme activity of N9 NA was inhibited efficiently by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, whereas hemagglutinin activity was unaffected. The NAs of several variants with sequence changes in the NC-41 epitope lost hemagglutinin activity without any loss of enzyme activity, suggesting that the two activities are associated with separate sites on the N9 NA head.
Read full abstract