The goal of this research was to analyse the synergistic effect between selected plant extracts with zinc oxide particles, and zinc stearate. The influence of ZnO on the antimicrobial effectiveness of the selected extracts was confirmed in previous research carried out by the authors. However, the impact of zinc stearate on extract activity has yet to be analysed. The aim was to cover PLA films with active coatings based on hydroxy-propyl-methyl-cellulose (HPMC), or/and ethyl cellulose (EC) containing plant extracts and ZnO which has a synergistic effect. An additional aim was to use a CO2 extract of raspberry seed (RSE) with zinc stearate as active additives within the coatings. An examination of the antimicrobial properties (against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas syringae and Φ6 bacteriophage) of the covered films, as well as an investigation of layer presence with regards to PLA morphology (SEM, ATR-FTIR analysis) was carried out. The research work that was performed indicated that black chokeberry extract (ChE) and zinc oxide particles were effective against S. aureus, P. syringae and B. subtilis strains. In addition, the ChE with zinc stearate (ZnSt) was active against all analysed strains. The HPMC with ChE and ZnO as additives had antimicrobial properties against S. aureus, P. syringae and E. coli strains. The ChE was found to inhibit the growth of all of the analysed bacterial strains. When considering the coatings based on EC with the CO2 extract of raspberry seed (RSE) and ZnO, it was noted that they were only active against Gram-negative bacteria. The results of the experiments confirmed that AC1 (EC with RSE with ZnO) and AC2 (EC with RSE with ZnSt) coatings were not active against a phi6 bacteriophage. The HPMC coating containing the AC3 layer (ChE and ZnO) eliminated Φ6 particles, confirming its antiviral properties. In addition, the presence of the active (AC1, AC2 and AC3) coatings was confirmed by SEM and FTIR analysis.
Read full abstract