In children with hypoplastic left heart syndrome (HLHS), volume overload (VO) is inevitable, and the right ventricle (RV) pumps blood into the systemic circulation. Understanding the molecular differences and their different responses to VO between the RV and left ventricle (LV) at the neonatal and highly plastic stages may improve the long-term management of children with HLHS. A neonatal rat ventricular VO model was established by the creation of a fistula between the inferior vena cava and the abdominal aorta on postnatal day 1 (P1) and confirmed by echocardiographic and histopathological analyses. Transcriptomic analysis demonstrated that some of the major differences between a normal neonatal RV and LV were associated with the thyroid hormone and insulin signaling pathways. Under the influence of VO, the levels of insulin receptors and thyroid hormone receptors were significantly increased in the LV but decreased in the RV. The transcriptomic analysis also demonstrated that under the influence of VO, the top two common enriched pathways between the RV and LV were the insulin and thyroid hormone signaling pathways, whereas the RV-specific enriched pathways were primarily associated with lipid metabolism and arrhythmogenic right ventricular cardiomyopathy (ARVC); further, the LV-specific enriched pathways were primarily associated with nucleic acid metabolism and microRNAs in cancer. Insulin and thyroid hormones may play critical roles in the differences between a neonatal RV and LV as well as their common responses to VO. Regarding the isolated responses to VO, the RV favors an ARVC change and the LV favors a reduction in microRNAs in cancer. The current study suggests that insulin, thyroid hormone, and cancer-associated microRNAs are potential therapeutic targets that should be explored by basic science studies to improve the function of the RV to match that of the LV.
Read full abstract