An experiment was conducted at the screen house of the Department of Horticulture, CCS Haryana Agricultural University, Hisar, Haryana during 2018–19 and 2019–20 to assess the impact of 5 different salinity levels [0.07 (control), 2.5, 4.0, 5.5, and 7.0 dS/m] on the seed germination and biomass of 9 citrus (Citrus spp.) rootstock seedlings (Rough lemon, Pectinifera, Cleopatra mandarin, Rangpur lime, Alemow, Volkamer lemon, NRCC-4, NRCC-3 and CRH-12). Experiment consisted of 45 treatment combinations and 3 replications in a completely randomized design (CRD). Under the influence of soil salinity, the number of days taken for seed germination, seed germination percentage, fresh and dry root and shoot biomass were adversely affected across all rootstocks compared to the control treatment (0.07 dS/m). Among the tested rootstocks, Volkamer lemon exhibited the highest seed germination rate (57%), followed by Rangpur lime (53%) and CRH-12 (50%). Conversely, Pectinifera showed the lowest seed germination percentage (37%), followed by Alemow (43%) at 7 dS/m. The minimum reduction at 7 dS/m over control in fresh shoot and root and dry shoot and root biomass was observed in Rangpur lime (37.7, 16.2, 27.8 and 27.3%, respectively), followed by Volkamer lemon (38.0, 16.2, 28.3 and 28.5%, respectively). On the other hand, Pectinifera exhibited the highest reduction in biomass (51.9, 40.5, 47.0 and 43.9%, respectively), followed by Alemow (45.7, 30.9, 46.5 and 39.9%, respectively). Among all the rootstocks, Rangpur lime, Volkamer lemon and Cleopatra mandarin displayed better tolerance to salinity, exhibiting relatively lower reduction in biomass at the highest salinity level (7 dS/m) compared to the control. Cleopatra mandarin, Rough lemon and NRCC-3 showed a moderate response, while Pectinifera, NRCC-4, and Alemow were found to be less tolerant, exhibiting higher reduction in terms of count of seed germination days, seed germination percentage, fresh and dry root biomass, and shoot biomass at 7 dS/m compared to the control treatment.
Read full abstract