Magnesium-based alloys show significant promise for widespread applications owing to their lightweight nature and improved mechanical properties achieved through grain refinement via hot rolling. This investigation focuses on Mg-xAl-yCa-zMn (AXM alloys), pre-heated to temperatures of 350, 400, and 450 °C and processed via both single-pass differential speed rolling (DSR) and conventional rolling (CR). The key findings reveal the interplay between processing temperature, strain rate during single-pass rolling, and an innovative approach for incorporating varying amounts of Ca, influencing grain size, quantity of dynamic recrystallization (DRX) grains, and overall mechanical properties, including strength and ductility. A noteworthy observation is the positive correlation between an increase in the total reduction during hot rolling and a higher fraction of DRXed grains. This leads to a significant reduction in average grain size, diminishing from 60.3 ± 54.3 μm to 19.5 ± 14.2 μm at 40%, nearly a third the size of T4 grains (the initial homogenized microstructure of the AXM alloys). The resultant material strength experiences a doubling from an average of 125 ± 10.2 MPa (T4) to 260 ± 25.8 MPa (DSR rolled at 40%) for the AXM alloys with potential improvement in the ductility depending on rolling speed conditions. This study also aims to analyze the combination of rolling temperature, rolling speed, thickness reduction, speed difference and Ca content implemented across a wide range of temperatures and strain rates to provide a holistic approach to the processing parameters affecting the microstructure and mechanical properties of AXM alloys. Furthermore, this study provides a deeper understanding of DRX mechanisms, including continuous DRX (CDRX), discontinuous DRX (DDRX), and twinning induced DRX (TDRX), while each of these mechanisms plays a distinct role in the overall enhancement of formability and performance of magnesium alloys.
Read full abstract