Electrocatalytic hydrogen evolution reaction (HER) is one of the most promising and clean strategies to prepare hydrogen on a large scale. Nevertheless, the efficiency of HER is greatly restricted by the large overpotential at the anode, and it is necessary to develop low cost electrocatalysts with excellent performance and stability. Molybdenum carbide has shown great potential in the field of HER due to its unique electronic structure and physical and chemical properties. In this paper, the current progress of molybdenum carbide-based catalysts for HER is summarized. The influence of phase structure, nanostructure, heterostructure and heteroatoms doping on its catalytic performance is discussed in detail. Especially, the catalytic mechanisms are analyzed according to structural characterization and theoretical calculation results. Finally, the challenges and prospects for the further development of molybdenum carbide-based catalysts for HER are put forward to guide the progress of this field.