Epicardial adipose tissue (EAT) is an important imaging indicator of cardiovascular risk. EAT volume is usually measured using electrocardiogram (ECG) gating. However, there are concerns regarding the influence of motion artifacts when measuring EAT volume on non-ECG-gated plain chest computed tomography (CT) images. Few studies have evaluated the EAT volume using non-ECG gating. This study aimed to validate the accuracy of EAT quantification using non-ECG-gated chest CT imaging. We included 100 patients (64 males, 36 females) who underwent simultaneous coronary artery calcification score imaging (ECG gated) and plain chest CT imaging (non-ECG gated). Images taken using non-ECG gating were reconstructed using the same field of view and slice thickness as those obtained with ECG gating. The EAT capacity of each image was measured and compared. An AZE Virtual Place (Canon) was used for the measurements. The Mann-Whitney U test and intraclass correlation coefficient were used for statistical analyses. P values <0.05 were considered statistically significant. Concordance was evaluated using Bland-Altman analysis. The mean EAT volume measured by ECG-gated imaging was 156.5 ± 66.9 mL and 155.4 ± 67.9 mL by non-ECG-gated imaging, with no significant difference between the two groups (P = 0.86). Furthermore, the EAT volumes measured using ECG-gated and non-ECG-gated imaging showed a strong correlation (r = 0.95, P < 0.05). Bland-Altman analysis revealed that the mean error of the EAT volume (non-ECG-gated imaging - ECG-gated imaging) was -1.02 ± 2.95 mL (95% confidence interval, -6.49 to 4.76). The EAT volume obtained using non-ECG-gated imaging was equivalent to that obtained using ECG-gated imaging.
Read full abstract