Economic and social development of both the country as a whole and its individual regions is impossible without maintaining the required level of development and technical condition of the road network. This also applies directly to agricultural producers. Despite the fact that considerable funds are allocated for the construction and repair of roads, the service life of roads often does not meet the standard values. One of the reasons for the low service life of road structures are design errors related to the lack of data on the thermal conductivity of road construction materials, seasonal freezing of the roadbed, which together with unsatisfactory soil and hydrological conditions contribute to significant deformations. One of the main problems in the road industry at present is insufficient consideration of soil and hydrological conditions of the area, which are estimated approximately from topographic maps and materials of old documents or, at best, from the results of reconnaissance surveys. At the same time, it is often difficult to provide the required load-bearing capacity and frost resistance of road structures with an unsuccessfully selected, even short route, since when designing the roadbed, soil and hydrological conditions are secondary, and the choice of the route location is primary. It is well known effect when periodic freezing and thawing of the road surface leads to the appearance of alternating stresses, which significantly accelerate the destruction of the road surface and sometimes the foundation. A thorough understanding of the processes of freezing and thawing of the roadbed makes it possible to avoid design errors, and the significant financial losses associated with them, in the construction of long-distance forest roads. The article presents the features of processes occurring in the layers of road construction during seasonal freezing. Hypotheses about the processes of moisture migration in seasonally frozen soils, the influence of heat capacity and thermal conductivity of road construction materials on the course of these processes, as well as methods for modeling processes occurring in road structures under the influence of natural and climatic conditions are considered, and the results of the field experimental studies are presented.
Read full abstract