Microwave plasmas have enormous potential as a rapid and energy efficient sintering technology. This paper evaluates the influence of both plasma atmosphere and metal powder type on the sintering temperatures achieved and the properties of the sintered powder metal compacts. The sintering is carried out using a 2.45 GHz microwave-plasma process called rapid discharge sintering (RDS). The sintering of three types of metal powder are evaluated in this study: nickel (Ni), copper (Cu) and 316L stainless steel (SS). An in-depth study of the effects of the plasma processing parameters on the sintered powder compacts are investigated. These parameters are correlated with the mechanical performance of the sintered compacts to help understand the effect of the plasma heating process. The substrate materials are sintered in four different gas discharges, namely hydrogen, nitrogen oxygen and argon. Thermocouple, pyrometer and emission spectroscopy measurements were taken to determine the substrate and the discharge temperatures. The morphology and structure were examined using scanning electron microscopy and X-ray diffraction. The density and hardness of the sintered compacts were correlated with the plasma processing conditions. As expected higher densities were obtained with powders with lower sintering temperatures i.e. nickel and copper when compared with stainless steel. Under the power input and pressure conditions used, the highest substrate temperature attained was 1,100°C for Cu powder sintered in a nitrogen atmosphere. In contrast under the same processing conditions but in an argon plasma, the temperature achieved with SS was only 500°C. The effect of the plasma gas type on the sintered powder compact chemistry was also monitored, both hydrogen and nitrogen yielded a reducing effect for the metal in contrast with the oxidising effect observed in an oxygen plasma.