Overhead ground wires typically have strong axial tension and are prone to structural defects caused by corrosion and lightning strikes, which could lead to serious safety hazards. Therefore, it is important to detect defects accurately and quickly to avoid those problems. Existing defect detection methods for overhead ground wires are mainly traditional metal defect detection methods, including eddy current detection, ultrasonic detection, and manual visual inspection. However, those methods have problems of low detection efficiency, high environmental requirements, and insufficient reliability. To solve the above problems, this paper studies a novel type of defect detection technology for overhead ground wire. Firstly, the magnetic leakage characteristics around the defects of overhead ground wires are analyzed, and the defect detection device is designed. Then, the influence of air gap, lift-off distance, defect width, and cross-sectional loss rate on the magnetic flux leakage signal is studied, a novel defect detection method for overhead ground wire is proposed, and experimental verification is carried out. The results show that the proposed method can accurately locate and quantify the defect, which has the advantages of good reliability and high efficiency and lays the foundation for preventing accidents caused by defective overhead ground wires.
Read full abstract