Atherosclerosis (AS) is a chronic inflammatory disease resulting from lipid metabolism disorders and immune imbalances. Dendritic cells (DCs) are key cells that regulate adaptive and adaptive immunity. When DCs engulf excessive amounts lipids, their function is altered, thereby, accelerating the inflammatory process of AS. Cellular lipophagy serves to reduce lipid accumulation and maintain cellular lipid metabolism balance. In this study, we investigated the effectiveness of 2,3,5,4′-tetrahydroxystilbene 2-O-β-D-glucoside (TSG) in intervening in the promotion of DCs lipid accumulation by ox-LDL, as well as its role in downregulating lipophagy. Our findings indicate that TSG reduces the maturity of DCs and promotes the differentiation of T cells towards Treg, thereby correcting the imbalanced Treg/Th17. These effects of TSG are closely associated with its inhibition of the PI3K-AKT-mTOR signaling pathway. After administering TSG to ApoE-/- mice that were fed a high-fat diet, there was a noticeable decrease in harmful blood lipids found in the serum. Additionally, the imbalanced Treg/Th17 levels in the spleen were restored, and the levels of pro-inflammatory factor IL-6 and IL-17A in the serum decreased, while the level of anti-inflammatory factor IL-10 increased. Furthermore, the arterial DCs showed a decrease in P62 content. Ultimately, these changes resulted in a reduction in plaque area. It is worth noting that the autophagy inhibitor chloroquine significantly altered the effects of TSG on ApoE-/- mice. In conclusion, this study reveals that TSG can alleviate AS. This is partly achieved through the activation of autophagy in DCs. By intervening in the lipophagy of DCs, it is possible to regulate the immune function of these cells, which in turn helps control the inflammation associated with AS. This presents a potential method for intervening in AS.
Read full abstract