Objective: To investigate the therapeutic effect of methotrexate loaded vesicles on experimental periodontitis in mice. Methods: Extracellular vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUC-MSC). Methotrexate loaded vesicles (MTX-EVs) were constructed, whose morphology and size were analyzed by using scanning electron microscopy and particle size analyzer. Western blotting was used to identify their surface specific proteins. C57BL/6J male mice of 4-5 weeks (provided by Experimental Animal Center of The Fourth Military Medical University) were selected, among which 8 were randomly selected by blind grasp method without treatment and fed normally as normal group, and others were induced to periodontitis models by local injection of lipopolysaccharide (LPS) into the periodontium. The LPS was injected once every day with a concentration of 2 g/L and a volume of 5 μl, lasting for two weeks. The mice with successfully induced periodontitis were randomly divided into 4 groups by blind grasping method, with 8 mice in each group. The LPS group was with no treatment, and the other three groups were treated with periodontal local injection of MTX, EVs or MTX-EVs, respectively. Two weeks later, enzyme-linked immunosorbent assay (ELISA) was used to detect the expressions of inflammatory cytokine interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in gingival tissue. The amount of alveolar bone resorption of four groups was detected by using micro-CT scanning and HE staining. The expression proportion of the inflammatory factor in gingival tissue was analyzed by using flow cytometry. Results: The scanning electron microscopy results showed that EVs and MTX-EVs were circular or elliptical in shape. Dynamic light scattering (DLS) particle size analysis showed that the particle size of EVs was around 200 nm, while that of MTX-EVs was around 300 nm. The ELISA results showed IL-1β levels in the normal group, LPS group, LPS+MTX group, LPS+EVs group and LPS+MTX-EVs group were (28.86±2.76), (51.50±2.04), (35.26±2.40), (45.49±2.04) and (35.77±3.49) ng/L. That is, the IL-1β concentrations in the LPS+MTX group, LPS+EVs group and LPS+MTX-EVs group were significantly lower than that in the LPS group (P<0.05); the mass concentration of IL-1β in the LPS +MTX-EVs group was significantly lower than that in the LPS+EVs group (P<0.05). The concentrations of IL-6 in the normal group, LPS group, LPS+MTX group, LPS+EVs group and LPS+MTX-EVs group were (125.44±4.12), (221.64±10.59), (178.16±16.90), (181.09±18.22) and (170.15±9.04) ng/L, among which the concentration of IL-6 in the last three groups were significantly lower than that in the LPS group (P<0.05). The mass concentration of IL-6 in the LPS+MTX-EVs group was significantly lower than those in the LPS+MTX group and LPS+EVs group (P<0.05). The concentrations of TNF-α in the normal group, LPS group, LPS+MTX group, LPS+EVs group and LPS+MTX-EVs group were (320.27±38.68), (479.62±40.94), (342.18±25.89), (415.88±12.01) and (325.75±30.83) ng/L, among which the concentrations of last three groups were significantly lower than the LPS group (P<0.05); the mass concentration of TNF-α in the LPS+MTX-EVs group was significantly lower than those in the LPS+EVs group and LPS+MTX group (P<0.05). The micro-CT results showed that the distance of cement-enamel junction-alveolar bone crest (CEJ-ABC) of the first molar and root (M1R1) in the normal group, LPS group, LPS+MTX group, LPS+EVs group and LPS+MTX-EVs group of mice were (0.11±0.03), (0.28±0.02), (0.23±0.03), (0.20±0.04), and (0.18±0.03) mm, respectively. Compared with the LPS group, the CEJ-ABC of the M1R1 in the LPS+MTX group, LPS+EVs group and LPS+MTX-EVs group were inhibited to varied degrees with statistically significant differences (P<0.05). Among them, LPS+MTX-EVs group had the best bone resorption inhibitioin effect compared to LPS+MTX group and LPS+EVs group, and the differences were statistically significant (P<0.05). The flow cytometry results indicated that the proportion of interferon-γ (IFN-γ) positive cells was (11.77±1.02)% in the LPS group, (6.87±0.65)% in the LPS+EVs group, and (4.15±0.92)% in the LPS+MTX-EVs group, respectively. The proportions of IFN-γ positive cells in the LPS+EVs group and LPS+MTX-EVs group were significantly lower than that in the LPS group (P<0.05), while the ratio of IFN-γ positive cells in the LPS+MTX-EVs group was found significantly lower than that in the LPS+EVs group (P<0.05). Conclusions: MTX-EVs can effectively alleviate the periodontal local inflammatory environment and reduce bone resorption of alveolar bone in periodontitis model mice.