Coherence-resonance chimera was discovered in [Phys. Rev. Lett. 117, 014102 (2016)10.1103/PhysRevLett.117.014102], which combines the effect of coherence-resonance and classical chimeras in the presence of noise in a network of type-II excitable systems. However, the same in a network of type-I excitable units has not been observed yet. In this paper we report the occurrence of coherence-resonance chimera in coupled type-I excitable systems. We consider a paradigmatic model of type-I excitability, namely, the saddle-node infinite period model, and show that the coherence-resonance chimera appears over an optimum range of noise intensity. Moreover, we discover a unique chimera pattern that is a mixture of classical chimera and the coherence-resonance chimera. We support our results using quantitative measures and map them in parameter space. This study reveals that the coherence-resonance chimera is a general chimera pattern and thus it deepens our understanding of role of noise in coupled excitable systems.
Read full abstract