Shape analysis is of great importance in many fields, such as computer vision, medical imaging, and computational biology. This analysis can be performed considering shapes as closed planar curves in the shape space. This approach has been used for the first time to obtain the morphological classification of erythrocytes in digital images of sickle cell disease considering the shape space S1, which has the property of being isometric to an infinite-dimensional Grassmann manifold of two-dimensional subspaces (Younes et al., 2008), without taking advantage of all the features offered by the elastic metric related to the possibility of stretching and bending of the curves. In this paper, we study this deformation in the shape space, S2, which is based on the representation of closed planar curves by means of the square-root velocity function (SRVF) (Srivastava et al., 2011), using the elastic metric of this space to obtain more efficient geodesics and geodesic lengths between planar curves. Supervised classification with this approach achieved an accuracy of 94.3%, classification using templates achieved 94.2% and unsupervised clustering in three groups achieved 94.7%, considering three classes of erythrocytes: normal, sickle, and with other deformations. These results are better than those previously achieved in the morphological analysis of erythrocytes and the method can be used in different applications related to the treatment of sickle cell disease, even in cases where it is necessary to study the process of evolution of the deformation, something that can not be done in a natural way in the feature space.